Quantcast
Channel: CodeProject – Bahrudin Hrnjica Blog
Viewing all articles
Browse latest Browse all 37

MagmaSharp – .NET High Level API for MAGMA

$
0
0

Introduction

Few weeks ago, I was doing research and I needed a fast program for Singular Value Decomposition. I have SVD implementation in my open source project called Daany which is using the SVD implementation of Accord.NET great Machine Learning Framework. However, the decomposition is working fine and smooth for small matrices with few hundreds rows/cols but for matrices with more than 500 rows and columns it is pretty slow. So I was forced to think about of using different library in order to speed up the SVD calculation. I could use some of python libraries eg. TensorFlow, PyTorch or SciPy or similar libraries from R and c++. I have used such libraries and I know how they are fast. But I still wanted to have approximately same speed on .NET as well.

Then I decided to look how can I use some of available c++ based libraries. Once I switch to c++ based project I would not be able to use .NET framework where other parts of my research are implemented. So only solution was to implement a wrapper around a c++ library and use pInvoke in order to expose required methods in C# code.

The first idea was to use LAPACK/BLAS numerical library to calculate not only SVD but whole set of Linear Algebra routines. LAPACK/BLAS libraries have long history back to 70s of the 20th century. They are proved to be very fast and reliable. However they are not supported for GPU.

Then I came to MAGMA which is nothing but LAPACK for GPU. MAGMA is very complex and fast library which requires CUDA. However if the machine has no CUDA, the library cannot be used.

The I decided to use hybrid approach and use MAGMA whenever the machine has CUDA, otherwise use LAPACK as computation engine. This approach is the most complex and required advance skills in C++ and C#. So after a more than a month of the implementation the MagmaSharp is published as GitHub open source project with the fist public release MagmaSharp 0.02.01 at Nuget.org.

MagmaSharp v0.02.01

The first release of MagmaSharp supports MAGMA Device routines: Currently the library supports MAGMA driver routines for general rectangular matrix:

  1. gesv – solve linear system, AX = B, A is general non-symetric matrix,
  2. gels – least square solve, AX = B, A is rectangular,
  3. geev – eigen value solver for non-symetric matrix, AX = X \lambda
  4. gesvd– singular value decomposition (SVD), A = U \sigma V^T .

The library supports float and double value types.

Software requirements

The project is build on .NET Core 3.1 and .NET Standard 2.1. It is built and tested on Windows 10 1909 only.

Software (Native Libraries) requirements

In order to compile, build and use the library the following native libraries are needed to be installed.

However, if you install the MagmaSharp as Nuget package, both libraries are included, so you don’t have to install it.

How to use MagmaSharp

MagmaSharp is packed as Nuget and can be added to your .NET project as ordinary .NET component. You don’t have to worry about native libraries and dependencies. Everything is included in the package. The package can be installed from this link, or just search for MagmaSharp.

How to Build MagmaSharp from the source

  1. Download the MagmaSharp source code from the GitHub page.

  2. Reference Magma static library and put it to folder MagmaLib. Magma static library can be downloaded and built from the Official site.

  3. Open ‘MagmaSharp.sln’ with Visual Studio 2019.

  4. Make sure the building architecture is x64.

  5. Restore Nuget packages.

  6. Build and run the Solution.

How to start with MagmaSharp

The best way to start with MahmaSharp is to take a look at the MagmaSharp.XUnit project, there is a small example how to use each of the implemented method with or without CUDA device.


Viewing all articles
Browse latest Browse all 37

Latest Images

Trending Articles





Latest Images